40 research outputs found

    Mathematical analysis of an HTLV-I infection model with the mitosis of CD4+ T cells and delayed CTL immune response

    Get PDF
    In this paper, we consider an improved Human T-lymphotropic virus type I (HTLV-I) infection model with the mitosis of CD4+ T cells and delayed cytotoxic T-lymphocyte (CTL) immune response by analyzing the distributions of roots of the corresponding characteristic equations, the local stability of the infection-free equilibrium, the immunity-inactivated equilibrium, and the immunity-activated equilibrium when the CTL immune delay is zero is established. And we discuss the existence of Hopf bifurcation at the immunity-activated equilibrium. We define the immune-inactivated reproduction ratio R0 and the immune-activated reproduction ratio R1. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that if R0 < 1, the infection-free equilibrium is globally asymptotically stable; if R1 < 1 < R0, the immunity-inactivated equilibrium is globally asymptotically stable; if R1 > 1, the immunity-activated equilibrium is globally asymptotically stable when the CTL immune delay is zero. Besides, uniform persistence is obtained when R1 > 1. Numerical simulations are carried out to illustrate the theoretical results

    Human Crowds Estimation based on Mobile Sensing

    Get PDF
    University of Tokyo(東京大学

    Mixed Far-Field and Near-Field Source Localization Algorithm via Sparse Subarrays

    Get PDF
    Based on a dual-size shift invariance sparse linear array, this paper presents a novel algorithm for the localization of mixed far-field and near-field sources. First, by constructing a cumulant matrix with only direction-of-arrival (DOA) information, the proposed algorithm decouples the DOA estimation from the range estimation. The cumulant-domain quarter-wavelength invariance yields unambiguous estimates of DOAs, which are then used as coarse references to disambiguate the phase ambiguities in fine estimates induced from the larger spatial invariance. Then, based on the estimated DOAs, another cumulant matrix is derived and decoupled to generate unambiguous and cyclically ambiguous estimates of range parameter. According to the coarse range estimation, the types of sources can be identified and the unambiguous fine range estimates of NF sources are obtained after disambiguation. Compared with some existing algorithms, the proposed algorithm enjoys extended array aperture and higher estimation accuracy. Simulation results are given to validate the performance of the proposed algorithm

    A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET

    Get PDF
    PURPOSE: A critical bottleneck for the credibility of artificial intelligence (AI) is replicating the results in the diversity of clinical practice. We aimed to develop an AI that can be independently applied to recover high-quality imaging from low-dose scans on different scanners and tracers. METHODS: Brain [(18)F]FDG PET imaging of 237 patients scanned with one scanner was used for the development of AI technology. The developed algorithm was then tested on [(18)F]FDG PET images of 45 patients scanned with three different scanners, [(18)F]FET PET images of 18 patients scanned with two different scanners, as well as [(18)F]Florbetapir images of 10 patients. A conditional generative adversarial network (GAN) was customized for cross-scanner and cross-tracer optimization. Three nuclear medicine physicians independently assessed the utility of the results in a clinical setting. RESULTS: The improvement achieved by AI recovery significantly correlated with the baseline image quality indicated by structural similarity index measurement (SSIM) (r = −0.71, p < 0.05) and normalized dose acquisition (r = −0.60, p < 0.05). Our cross-scanner and cross-tracer AI methodology showed utility based on both physical and clinical image assessment (p < 0.05). CONCLUSION: The deep learning development for extensible application on unknown scanners and tracers may improve the trustworthiness and clinical acceptability of AI-based dose reduction. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-021-05644-1

    A novel method for maize leaf disease classification using the RGB-D post-segmentation image data

    Get PDF
    Maize (Zea mays L.) is one of the most important crops, influencing food production and even the whole industry. In recent years, global crop production has been facing great challenges from diseases. However, most of the traditional methods make it difficult to efficiently identify disease-related phenotypes in germplasm resources, especially in actual field environments. To overcome this limitation, our study aims to evaluate the potential of the multi-sensor synchronized RGB-D camera with depth information for maize leaf disease classification. We distinguished maize leaves from the background based on the RGB-D depth information to eliminate interference from complex field environments. Four deep learning models (i.e., Resnet50, MobilenetV2, Vgg16, and Efficientnet-B3) were used to classify three main types of maize diseases, i.e., the curvularia leaf spot [Curvularia lunata (Wakker) Boedijn], the small spot [Bipolaris maydis (Nishik.) Shoemaker], and the mixed spot diseases. We finally compared the pre-segmentation and post-segmentation results to test the robustness of the above models. Our main findings are: 1) The maize disease classification models based on the pre-segmentation image data performed slightly better than the ones based on the post-segmentation image data. 2) The pre-segmentation models overestimated the accuracy of disease classification due to the complexity of the background, but post-segmentation models focusing on leaf disease features provided more practical results with shorter prediction times. 3) Among the post-segmentation models, the Resnet50 and MobilenetV2 models showed similar accuracy and were better than the Vgg16 and Efficientnet-B3 models, and the MobilenetV2 model performed better than the other three models in terms of the size and the single image prediction time. Overall, this study provides a novel method for maize leaf disease classification using the post-segmentation image data from a multi-sensor synchronized RGB-D camera and offers the possibility of developing relevant portable devices

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Proteogenomics connects somatic mutations to signalling in breast cancer

    Get PDF
    Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets
    corecore